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Optical activity due to the coupling of molecular subunits is discussed in its 
dependence on various electromagnetic tensor properties of the subunits and 
on geometrical parameters. Certain approximation aspects of the theory are 
analyzed. Symmetry rules for dynamic-coupling terms are derived. Origin- 
dependent tensors are eliminated by referring their components to local 
frequency-dependent polarizability centers. Kirkwood's reduced first order 
result is revisited. 
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1. Introduction 

A quantum mechanical theory of natural optical activity which relates optical 
rotatory power to molecular structure was formulated by Kirkwood [1]. It is 
based on a molecular model in terms of chemically distinguishable subunits 
without electron exchange between them, their relative spatial distribution, and 
their electric multipole interactions considered as a perturbation. The model is 
used for a perturbation treatment of the Rosenfeld expression [2] which is a 
standard approximation for the molecular rotatory power and the first term in 
a series of pseudoscalar products of molecular electric and magnetic transition 
multipole moments of equal rank [3]. The perturbation treatment,  partly per- 
formed in [1], leads to an expression for the optical rotatory power in terms of 
electromagnetic properties of the subunits such as dipole moment and various 
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polarizabilities as well as of geometrical parameters describing their steric arrange- 
ment (e.g. [4-8]). Thus, comparison of the optical rotation of molecules differing 
in the nature of their subunits at given molecular sites is made possible, and 
chemical relation can be taken into account. 

This theory combines the conceptions of the dynamic- and static-coupling theories 
according to which optical activity is generated by the dynamic coupling of 
electronic motions on various subunits and, respectively, by the coupling of a 
chromophoric group to the electric field of the asymmetric static charge distribu- 
tion of the remainder of the molecule (cf. [8]). For applications of the theory, a 
proper definition of the molecular subunits has to be used, and the zeroth-order 
Hamiltonian in the Born-Oppenheimer approximation has to be correspondingly 
specialized [1, 7, 9]. Additional approximations in this theory for deriving simple 
expressions for the rotatory parameter are: (1) restriction of the perturbation 
treatment of Rosenfeld's expression to first order, (2) truncation of the electric 
multipole expansion after the dipole-dipole term, (3a) disregard of the static- 
coupling terms or (3b) of the dynamic-coupling terms or (3c) of parts of the 
dynamic-coupling terms, (4) reduction of the geometrical parameters to distances 
between "centers of gravity" of the subunits. Such simplifications were already 
criticized by Hfickel [10]. Since their use for obtaining quantitative results may 
lead to serious errors, the limits of their applicability have to be taken into account. 

Approximation (1) leads to a linear combination of contributions to the optical 
rotatory power depending on properties of pairs of molecular subunits. If each 
pair is achiral, interactions of at least three subunits have to be considered and 
the rotatory power cannot be described by a first order expression. A typical 
example is the optical activity of so-called Td-derivatives [7], i.e. molecules with 
a Td-symmetrical skeleton and four different substituents whose symmetry ele- 
ments are also symmetry elements of the C3v-axes of the skeleton. Thus, the 
contribution to the optical rotatory power which appears in all chiral methane 
derivatives and which is the main contribution, if the deviations from the idealized 
situation in Td-derivatives are small, is described in second-order perturbation 
theory. A first order perturbation calculation describes contributions to the optical 
rotation of methane derivatives which are based exclusively on deviations from 
the Td-situation. In this respect, the order of the perturbation calculation is a 
doubtful criterion for the order of magnitude of the result. For such discussions 
an algebraic analysis of the optical activity of chiral molecules with a common 
achiral skeleton by Ruch and SchSnhofer [11, 12] is used to best advantage. 
Approximation (2) requires the distance between two subunits to be much larger 
than the separation of charges within them and will, therefore, introduce errors 
in calculating the optical rotatory power of compact molecules. The optical 
rotation of ketones is explained by considering the electric dipole-quadrupole 
coupling of subunits [4, 6]. The static-coupling terms and, thus, approximation 
(3a) were analyzed by Schellman [13] in terms of the symmetry of subunits. 

In spite of the considerable interest the coupling theory of natural optical activity 
has attracted (cf. [14]), the dynamic-coupling terms have not been systematically 
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discussed in their dependence on the symmetry of subunits. In this note such an 
analysis and, thus, an analysis of approximation (3b) and of the special Kirkwood 
approximation (3c) is performed provided that approximations (1) and (2) are 
valid. The correlation between the approximations (3c) and (4) is examined in 
terms of local frequency-dependent polarizability centers. 

2. Optical rotatory power in first-order coupling theory 

The molecular optical rotatory power [M] of randomly distributed chiral 
molecules of one sort in gas or liquid phase at transparent frequencies is given 
by the Rosenfeld expression [2, 15] 

_ _  2 < 0 1 - , I s > < s l i x l 0 >  [M] - 48"n'Na n2+._... 2 v2 t ry ,  7 Im Y~ (1) 
c 3 = ~  2 v2 

s / " s O  - -  

(0[m[s) and (0[ix[s) denote matrix elements of the molecular electric and magnetic 
dipole moment between the nondegenerate molecular ground state [0) and an 
excited state [s), vs0 is the corresponding eigenfrequency, u the frequency of 
the linearly polarized light wave whose plane of polarization is rotated, NA is 
Avogadro's number, c the velocity of light, (n2+2) /3  the Lorentz factor, Im 
denotes the imaginary part of the sum, tr the trace of the tensor ~/. 

For the perturbation calculation of the rotatory parameter tr ~/ according to 
Kirkwood's molecular model, the unperturbed subunits may be, for instance, 
completely isolated groups or ligands in the presence of an achiral molecular 
skeleton as in methane or allene derivatives. In the second case, the interaction 
between the skeleton and each ligand is considered in zeroth order so that 
perturbation results for tr ~/do not explicitly depend on electromagnetic proper- 
ties of the skeleton. The zeroth-order molecular state vector ]s ~ is a product of 
energy eigenstates ]si) of the unperturbed subunits li, i=  1, 2 . . . . .  N (and the 
skeleton/N+I). Spin effects are disregarded [16] and, correspondingly, the eigen- 
functions are chosen to be real. The molecular moments are decomposed into 
moments of the N (or N + 1) groups which are assumed to be electrically neutral. 
Thus, m = ~i m(i), IX = ~i Ix(i) where the electric moments m and m (~ are origin- 
independent, whereas the magnetic moments Ix and Ix(i) are origin-dependent�9 
If IX is referred to r' instead of r, it is 

( sllx( r')[t) = (slix(r) lt) +Izr v,t( slmlt) • ( r' - r) (2) 
C 

where 

p.(r) = ~k qk ~ k c ( r k - - r ) •  m = Y .  

and qk, Mk, .Ok denote charge, mass, and momentum of particle k at position rk. 
With the aid of (2), the origin-independence of tr ~/is verified; it holds true in 
each perturbation order. 
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In zeroth order, tr ~/is the sum of the rotatory parameters tr ~/(0 of the molecular 
subgroups. 

N(N+I) 2 V (Oilm(~ 
[trot] (~ Y. t ry / ( i ) ,  ~ / ( i ) = ~ I m z - ,  p2-~-~-------5- �9 (3) 

i = l  s i s i O  i - -  1 )  

The unperturbed subunits (and the skeleton) are assumed to be achiral, and thus 
each tr ~/(0 vanishes. 

The first-order dipole-dipole approximation of tr ~/is written in the form [6, 7] 

N 
[try/] (1)= E (H~ '~) +H(2il)), 

i< j= l  

H~ i~) = - S i t  E Xppo-kgO]k~'o-P(i) [ .  ~ [ . ( i )  �9 T(i~) . (m(/))), 
p , o -  

(4) 

H(2iJ) = - S i j  E -.~r.'~'t.o,t~.~(i)~ (~) t .  w . ( i ) � 9  e~?)(e~ ) �9 T (i~) �9 e~O),, 
p,o-,p',o-' 

where H~  j) depends on properties of the unperturbed subunits l~ and lj only. S~j 
is a symmetrizing operator with the property S,.~ (~j) = f ( q ) + f ( j i ) .  T(~j) is the 
dipole-diple tensor 

1 R(~J)R(~J)~ 
T(ii) = ~ (  1 - 3  ~ ] ,  R(iJ) = R(J)_  R(O. 

R (i) and R (j) are vectors directed to the centers of the electric multipole interaction 
between subunit li and lj. The second-rank tensor ~(i) is the familiar frequency- 
dependent polarizability; the third-rank tensor F (i) describes the variation of ~/(0 
by a static electric field which here is generated by the permanent electric dipole 
moment (m(J>)=(O~lm(J)[Oj) of s u b u n i t  lj 1. ,y(i) and F (~ are origin-dependent 
tensors which, in equation (4), are referred to a common molecular origin to. 
The tensors (m(~ a(~), ~,(~), F (~ are written according to t ~~ = Y.p ...... t(i) _(o_(~) * p o - .  . .  q~ p {~ o" �9 �9 

where the ~(~) - - ~p , p - 1, 2, 3 are orthonormalized basis vectors of a coordinate system 
specific to subunit l~. 

The sum Y~<j HI  ~ describes the contributions to the optical rotatory power in 
first-order dipole-dipole approximation generated by the static coupling of the 

(,j) 
subunits; ~ i <  H 2  is due to dynamic coupling and expressible in terms of the 

1 . . . .  ~ a(k) (k) �9 po arlzablhtles , ~/ . Differences between Eq. (4) and the corresponding Eq. 
(13) of Ref. [7] are based on different conceptions of the intramolecular 
interactions; they do not influence the following discussion. 

1 The real tensors a ,  ~/, A, I '  used in this note are identical with (R)o~, ([),y, (R)A, (I) I. of Ref. [7] 
and correspond to G, [L .it of Ref. [19] as follows: ~=-u- lG,  A =[L F = - u - I Z  The meaning of 
the operators m and/~ chosen here is identical with that of [7] and opposite to that of [19]. 
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The terms H~ ij~ and H(z u) are each invariant with respect to a change of the 
molecular origin to, as can be verified using the transformation equations 

52 yp~(r')e~ =52 yo~(r)e~+--52 %~e~x(r ' -r) ,  
cr  t7  C 

c~o~ = a~ o (5a) 

Y, r.~,(r')e~ = 52 Fo~,(r)e~ + -  Y~ Aoo-,eo- x ( r  - r ) ,  
o-  o- C o-  

Ao~, = A~o, (5b) 

where the hyperpolarizability A describes the variation of a by a static electric 
field. (5a) and (5b) are derived from the definition of the tensors o~, ~/, A, F and 
from Eq. (2). From (5a) and (5b), the corresponding transformation equations 
for single components yp~ and Fo~, are obtained; from (5b) it follows that Y~p Fpp= 
is origin-independent. 

A consequence of not completely taking into account the Coulomb interaction 
energy is that the Rosenfeld expression in each perturbation order depends on 
the individual centers R (~ i = 1, 2, 3 . . . . .  N of the subunits which are chosen as 
origins of the multipole expansion. Origins leading to optimal convergence of the 
expansion are supposed to nearly coincide with the charge centers of the polariz- 
able electrons in each subunit [1 7, 1 8]. For the following discussion, the expansion 
points are chosen according to subunit symmetry as follows: R is a point of the 
mirror plane in a Cs-system, a point of the axis in a Cn~-system, and the center 
of mass in any other achiral system. Otherwise, the achiral subunit together with 
the expansion point would be treated as a system with lower symmetry or as a 
chiral system. In pure Cs- and Cno-subunits, the identification of the expansion 
point with the center of mass is normally not optimal, since two isotopically 
distinct molecules have the same intramolecular Coulomb energy and do not 
differ to a high degree of accuracy in any electromagnetic property (cf. also [19]). 
Such differences in the choice of expansion points, however, are negligible for 
systems with a sufficiently large distance between each other as considered in 
dipole-dipole approximation. 

3. Symmetry and optical rotation 

For discussing the static- and dynamic-coupling contributions H~ ~j~ and H(2 ij) in 
their dependence on the symmetry of the unperturbed achiral subunits, the special 
form of the electromagnetic tensors <m>, ~p,= Fop~e~, oL, ~/has to be determined 
for the corresponding symmetry groups G. The non-zero components of these 
tensors are found according to Neumann's principle [20]: components of a tensor 
describing a physical property are invariant under symmetry transformations of 
the coordinates. For this purpose, the coordinate system specific to a subunit is 
chosen as follows: the origin coincides with the multipole expansion point R;  
the orthonormalized basis vectors ep, p = 1, 2, 3 are oriented arbitrarily in the 
case of pure Ci; in the case of pure Cs, e3 is perpendicular to the mirror plane; 
in the other achiral cases, e3 is parallel to an axis of highest order; in the case 
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Table 1. Non-zero  components  of <m), Yp,~ Fpo~eo, or, ~ (R)  

D. Haase  

Achiral  

symmetry  G a me F~ -= Yp Foo~ %~ = a~p b 7p~(R) ~ 

Ci F1, ['2, F3 0/I1, 0/22, ~ 
0/12~ 0/13~ 0/23 

Cs m l , / n 2  F3 0/11, 0/22, ~ 713, 723 

ff12 731~ 7)/32 

C2h F3 0/11, 0/22, ~t33 

ol12 

Cnh, S2n(n > 3) F 3 a l l  = 0122 , 0133 

C2v m3 0/11~ 0/22~ 0/33 712~ ~/21 

C,,~(n >- 3) m 3 0/11 = 0/22, a33 Y12 = --721 

$4 F3 ~ : 0/22, 0/33 711 = - -722 

712 = ']/21 

~12 ~ 721 D2d 0/11 ~ 0/22~ 0/33 

D2h 0/11~ 0/22~ 0/33 

Dnd, Onh(n >i 3)  0/11 = 0/22' 0133 

Ta, Th, Oh, 0 ( 3 )  a l l  = a22  = 0/33 

a A symmetry  is called achiral if the symmetry  group G contains an improper  rotation. 
b Non-diagonal  components  of ot vanish if principal axes are chosen. 
CFor $4, the x- and y-axis can be chosen so that Yrl or Y12 vanishes. 

of C2v and D 2 d  , e I lies in one of the mirror planes; for D2h , the basis vectors are 
parallel to the rotation axes. 

For these coordinate systems, the specification of the tensors needed is given in 
Table 1. There is no permanent  electric dipole moment (m) except for systems 
with pure symmetry Cs or C,v. The vector Y~p,~ Fpp~e~ vanishes if the system has 
symmetry C,v or a higher symmetry. The symmetrical tensor ot has non-zero 
components for each system; its non-diagonal components vanish if principal 
axes are chosen; for Cs and CEh, the 3-axis is a principal axis. The ~/-components 
referred to the axes introduced vanish except for the cases of Cs, C,v, $4, and 
DEd ; in the case of $4, a proper  choice of el and e2 leads to the vanishing of one 
of the two "r-components; for the following discussion, only ~/12 = 'Y21 will be used 
for $4 in correspondence with OEa.  

As can be seen from Table 1, the static-coupling term H~ ij) vanishes for various 
combinations of subunit symmetries G (~ and G (j). For  example: 

H~ ~j) = 0 if G (k) # C~, C,,~, k = i, j 

or G (k) D C,~, k = i, j (6) 

or G " )=  Dna, D,,h, cubic. 

Apart  from exceptions, H~ ~j) does not vanish if the subunits l~, lj form a chiral 
pair and have symmetries (G  (i), G (j)) such as (C~, C~), (Cs, Cn~), (Cnh, Cm~). 
The results correspond with symmetry rules for static-coupling effects given by 
Schellman [13]. 
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The  dynamic-coupl ing  t e rm  H(: q) is t r ans fo rmed  with the aid of (5a) into the 
express ion 

H(2ij) __ u ( i j )  , Tr(ij) 
- - l l 2 1  "1- /" /22  , 

H ( i J ) = _ S i  j ~ ~ ( i ) _ ( j )  r D ( j ) w _ < i )  e~))(e(~) T(iJ)  e(~)), ( 7 )  21 ('~po" ~p'o" k l~' ]klSp " " " 
p,o',p' ,at' 

H (  q) iT 22 Z (i) ( j)  r r m ( j ) _ R ( i ) ,  -<i)  x e~)](e<~ ) .  T ( i j ) .  e<o0), 
: - -  OLpo~OLp,cr, L~[~ ~p 

C p,o-,p',o-' 

where  [a, b x c] is the scalar triple vec tor  product .  Examples  for  G (~ and G (j) 
are  given, for  which-H(2~i ) vanishes: 

H(iJ) = 0 if G (k) ~ Cs, Cnv, $4, D2a, k = i, j (8) 21 

or  G (k) ~ Cn, n >- 3, k = i, j, axes coplanar .  

The  second condi t ion is p roven  as follows: the at- and ~,-tensor for  a sys tem with 
a threefo ld  or  higher o rder  ro ta t ion  axis can be wri t ten in the fo rm of 

at= a l l l  +Aote3e3, 1 =Y. eoe ., Aa  : a 3 3 - -  OLll ,  
P 

~/= 3q2(exe2- e2e,); 

insert ion into the expression for  l-Zlr-r(q) yields 

g( i j )  = r A~(i)~ (j) [~(i) [~(J)~(J) _ ~(J)D(J)~ T(J i) e(3i)); 
21 ~ij  "a'ut 7 1 2 k ~ 3  " k t ' l  r"2 r"2 r" l  ! "  " 

this term vanishes if the axes are coplanar, i.e. if e(3 ~ and e(J ) are coplanar, since 
then the vectors e~ j) and e(a j) can be chosen so that (e(3 i). e~J))=(e (i). e(j)), 
(e~ j). R (q)) = (e(2 j). R (q)) and vice versa for i<--~j. 

u(q) depends on polarizabilities at(k), k = i, j and on geometrical para- The term i ,  22 

meters. It vanishes if one of the subunits, say Ii, is isotropically polarizable, since 
by using principal axes for at(i) 

H(q)  ~ ( i )  ^ ( j )  r D ( i j )  e(O e~) . e~) )  22 U~ll  ~ X ] ( e  ( i)  T (ij) : r o.o. l ~  ~ �9 
p,o- 

- - ~ < i )  V ^<j) r~<ij) e~) T(iJ) e~)] 
-- ~ 1 1  ~ (X~L~ , X �9 ----0. 

o- 

H(q) vanishes as well if bo th  subunits have  a threefold  or  higher  o rder  axis and 22 

if these axes are  coplanar .  The  reason:  for  such subunits  the tensor  at has cylinder 
symmetr ica l  t r ans fo rmat ion  behavior ,  and a pair  of Co~o-subunits with coplanar  
axes is achiral. Thus  

H (  q) = 0 22 if G (i) is 'cubic 

or G (k) D C n or Sn, n -> 3, k = i, j, axes coplanar .  
(9) 

It  is thus shown: depending  on the symmet ry  of subunits,  the cont r ibut ion  to the  
optical  ro t a to ry  power  by a chiral pair  (li, l i) in first o rder  d ipo le -d ipo le  approxi -  
mat ion  vanishes,  or  it is descr ibed by one or  bo th  of the dynamic-coupl ing  t e rms  
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TaMe 2. Simple examples showing the dependence of H(. is) on subunit symmetries G (1), G (j) a 

H~y) r-r(~i) lz(ij) i f  G (i) G (1) �9 a 21 l ~  22  a n d  i f  

o o o c.~ Crop 
o �9 �9 c . .  c,~ 
0 0 �9 Cnh Cmh 
0 �9 0 cubic Cs, C2v, D2d 
�9 0 0 C,h Cmv 
�9 �9 �9 c~ cs, c.~ 

n, rn -> 3, axes coplanar 
axes not coplanar for n, m >- 3 

axes not coplanar for n, m -> 3 

n, m _> 3, axes coplanar 

a Apart  from exceptions, terms �9 cannot be excluded for reasons of symmetry. 

H ( i J )  L t ( i j )  
21 , ~t122 or by the static-coupling term H~ ij), or it is generated by both of the 

coupling mechanisms. Some examples are given in Table 2. If the subunits are 
interpreted as ligands coupled to an archiral molecular skeleton, their symmetry 
groups permit ted are only C~, C,~. 

4. v-Centers and Kirkwood's approximate [ormula 

The V-components referred to the coordinate systems introduced above do not 
vanish in the case of Cs, C,,v, $4, and D2d. However ,  they might also vanish if 
referred to other origins. For determining such origins, the vectors Vo and et o 
are introduced, 

Vo = Y, Yo=e~, 0% = ~ apses, p = 1, 2, 3 
cr o" 

and the transformation equation (5a) is written as follows 

77" 

vo(r )  = To (R)  +--o~ o • ( r -  R ) .  (10a) 
c 

For achiral systems, vp (R)  and oL o are orthogonal  to each other for all p or can 
at least be chosen to be so. Therefore,  origins r exist where [vo(r)l = 0. The set 
of these points is denoted by L o. (10a) yields 

[vo(Lo)l = 0, p = 1 , 2 , 3  

where 

L o = R + u o ( R ) + K t ~  p, u p ( R ) =  
c a p  x v o ( R )  

i,, n 2 
(10b) 

and with K being an arbi trary real constant. L o defines a straight line which is 
independent of the special choice of origin R. For  ~c = 0, it is 

Ivp(Zo)l--0 with Z o = R + u o ( R ) .  

The results are summarized: 
a) In the case of Cs, the vectors Z o are directed to different points of the plane. 
The lines L1 and L2 lie in the plane, L 3 is perpendicular to the plane. Apar t  f rom 
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e x c e p t i o n s , / - , 1  and/-,2 have an intersection point; there, the ~,-components vanish 
except for Y31 and Y32. Correspondingly, at the intersection of L3 and the mirror 
plane, the ~/-components vanish except for Y13 and "Y23. 
b) In the case of Cn~, Z1, Z2 are vectors to points of the axis, and Z3 = R. If 
n = 2, Z1 and Z2 do not coincide. If n-> 3, however,  Z1- -Z2 ,  i.e. there is but 
one origin at the axis where all components yp~ vanish. 
c) In the case of D z d  , the vectors up(R), p = 1, 2 with ul = - U z  are parallel to 
the axis of subsymmetry C2~ ;I U3(R)]  = 0. Z 1 = R 4- U l ( R ) ,  Z 2 = R - U l ( R ) ,  Z 3 = R 

are vectors to points of the axis. R is the point of intersection of the three C2-axes 
where ')/12 -~" ~/21" 

d) In the case of $4, a coordinate system exists referred to which the diagonal 
tensor components  Yoo vanish. The components ~Y12 and "Y21 vanish at points of 
the axis on opposite sides of R as in the case of D2d. 
e) In the other cases of achiral systems, luo(R)l = 0, Vp and the lines L o intersect 
at the geometric center R = Zo, Vp where ~/= 0. 

The points Zp = R +  up(R), p = 1, 2, 3 shall be called ~/-centers. In the cases of 
symmetry C,, C,,o, D2d, $4, their position in the mirror  plane or, respectively, at 
the axis is defined in terms of dynamic polarizabilities and thus depends on the 
frequency of light used; its dependence on the nuclear masses is negligible 1. For 
any other achiral system, only one ,/-center exists which coincides with the center 
of mass. 

If the ~/-centers are used as origins for the corresponding ~,-components, the 
term H(2 q) can be written as an expression depending on polarizabilities t~ (i), ot (j) 
as well as on geometrical parameters,  but not explicitly on ~/(i)_ and 
~/(J)-components. From Eqs. (4), (5a), and (10b) 

------ (i) (j) r,7(j) Z ~ ) ,  e ( i ) •  e~),](e~) T(q) e~)) H(2 q) ~ Y~ ap,,o~p,~,LL, p,- -  " �9 (11) 
C p,o-,p',o-' 

where 

z ( k )  (k) (k) (k) p = R  +up (R  ), k= i , j .  

H(2 u) does not depend on the additive term Kotp of Lp, as expected. This 
formulation of H~ ij) is comparable with that of ,,r~(iJ)22 according to Eq. (7). In 
(11), however,  two types of geometrical parameters  occur: distances between 
multipole expansion points as well as distances between ~/-centers. 

In his approach to the theory of natural optical activity, Kirkwood used exclusively 
~l (  ij) the term , ,  22 to describe the contribution to the rotatory parameter  by a chiral 

pair of molecular achiral subunits. The limits of this description follow from a 
comparison of l~221J(/J) with H(2 ~ 

i) If none of the achiral subunits I~, lj has pure symmetry C~, C,~, O2a, or $4, it 
is ~(q) - H(2 q) H~ q) �9 �9 2 2  - as well as = 0 .  

1 Buckingham and Longuet-Higgins [19] mentioned corresponding properties of the "effective 
quadrupole centres" of dipolar molecules. 
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ii) If at least one of the subunits li, li has symmetry Cs, C.v, D2a, o r  $4 and if 
r-r(iJ) is of the order --22r-r(~J) does not vanish, the relative magnitude of H(2 ~j) and ~122 

H(,j) /r_t(ij) ~ ]Z~) _ Z ~ ) I / I R ( J ) _  R(i) I 2 l a l  22 

where IZ(p i) - Z~)I is a mean distance between the ~/-centers of Ii, lj and normally 
different from the distance IR (ij) ]. Their ratio, however, is the less different from 
1 the larger IR(ii) l as compared to the separation of charges within the subunits. 
This is exactly the condition for the validity of truncating the multipole expansion 
after the dipole-dipole term. In this approximation it is, therefore, valid to neglect 
t h e  d i f f e r e n c e  b e t w e e n  .Jt22IJ(iJ) a n d  H~2 ij). A c o m m e n t  of  this t y p e  was  first  g i v e n  

by Moffitt [21]. 

r_r(ij) describes the contribution to the optical rotatory Thus, the Kirkwood term ~ 122 
parameter  tr'l, by the subunit pair (l t, lj) if the inter-subunit potential is the 
dipole-dipole potential and if the subunit symmetries are such that the static- 
coupling term H~ ~j) vanishes, but H(2~ ) does not. Examples were discussed above. 
When adding, however, further terms of the multipole expansion series, 11~(~J)22 
must be replaced by H(2 ~j), that is: if the conditions of case ii) are fulfilled, the 

r-r(~J) has to be taken into account or, respectively, the ~,-centers and the term ~. 21 
multipole expansion points have to be distinguished from each other. 
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